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Abstract. We present a theory based on the Green’s-function formalism to study the so-called giant Hall
effect in disordered nanoscale systems in which the metallic sites build up percolating networks. The
disordered Green’s functions are solved in the coherent potential approximation (CPA). This method is an
extension of the Blackman-Esterling-Beck approach. The crucial point is that we are able to predict the
quantum percolation threshold near which the Hall coefficient is enhanced by several orders of magnitude.

PACS. 71.23.An Theories and models; localized states – 71.30.+h Metal-insulator transitions and other
electronic transitions – 73.21.-b Electron states and collective excitations in multilayers, quantum wells,
mesoscopic, and nanoscale systems

In recent years many experimental works have been pre-
sented on the so-called giant Hall effect in granular
metal-insulator films or binary alloys near the percola-
tion threshold, in which the granular size is scaled about
several nanometers [1–4]. The Hall coefficient in such sys-
tems is 3 or 4 orders of magnitude greater than that in
a pure metal. Pakhomov et al. firstly reported the giant
Hall effect in Ni-SiO2 films in 1995 [1]. With the metal
volume fraction x near the metal-insulator transition, the
saturated value of the Hall resistivity is almost 4 orders
of magnitude greater than that of the pure nickel. After-
wards, nearly 3 orders of magnitude enhancement in the
Hall coefficient was observed in Cu-SiO2 granular films,
which are nonmagnetic [2]. It has been found that the
Hall coefficient varies little in both the magnetic and non-
magnetic metal granular systems throughout a quite wide
range of temperature. Phenomena similar to these cases
were also found in disordered binary alloys near some spe-
cial volume fraction by experimentalists [3].

Theoretically, Wan and Sheng studied the giant Hall
effect in nonmagnetic films [4]. They introduced the com-
petition between the local quantum interference and the
percolation to explain the giant Hall effect. Since the weak-
localization of electrons caused by their wave nature de-
creases the effective electron density, the effective Hall co-
efficient is enhanced. The Hall coefficient was calculated
by the Kubo formula in which the eigenfunctions and
eigenenergies of a disordered system were solved by the
numerical diagonalization of the Hamiltonian. The numer-
ical calculation process needs a large amount of sampling
average.
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The basic physics for the giant Hall effect is now be-
coming clear. In a metallic percolation network the wave
nature of charge carriers can significantly modify the clas-
sical picture of the Hall effect, especially when the metal-
lic concentration x is around the quantum-percolation
threshold xq. In general, the quantum percolation thresh-
old xq is greater than the classical percolation thresh-
old xc. In this paper, we would analytically study the Hall
effect in nonmagnetic disordered metal-insulator compos-
ites. However, unlike many previous studies in disordered
binary alloys or metal-insulator composite systems, not
only the diagonal disorder should be taken into account,
but also the nondiagonal disorder plays a quite important
part in the present case. These characteristics increase dif-
ficulties for analytic treatment of the giant Hall effect.

It is reasonable to assume that the structure of a metal-
insulator composition system for study is subjected to
a crystallographic description. A strictly periodic lattice
containing N equivalent sites is randomly occupied by two
kinds of atoms, the metallic and the insulated. The re-
spective concentrations are x and (1 − x). These consid-
erations define a whole ensemble of possible arrangements
of atoms. We are interested in the physical properties of
the disordered system averaged over this ensemble.

Since the metallic atoms are randomly distributed in
the insulator background, the model Hamiltonian can be
written as

H =
∑

i,j

tij
[
exp (iAij/φ0)a+

i aj + exp (−iAij/φ0)a+
j ai

]

+
∑

i

εia
+
i ai, (1)
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where εi and tij are the on-site energy and hopping inte-
gral, respectively, and are all random variables. The on-
site energy εi is an finite value ε for metallic sites, but
is infinite for insulated sites. In the nearest-neighbor ap-
proximation, if site i and site j are all metallic, tij = 1;
otherwise, tij = 0. The other parameter in equation (1) is
Aij which represents the gauge field, induced by a uniform
magnetic field B along the z-axis, φ0 = hc/e is the unit
quantum flux. We choose the gauge to give Ai,i+{0,0,1} =
Ai,i+{0,1,0} = 0, and Ai,i+{1,0,0} = −Bbybxj, where bx, by

and bz are the lattice separations in the three orthogonal
directions. For convenience, we take the cubic lattice, so
bx = by = bz = b.

The conductivity tensor σ in such disordered system
is given by the well-known Kubo formula [5]

σαβ =
2πe2

�

Ω
Tr[vαIm〈G〉vβIm〈G〉], (2)

where e is the electron charge, Ω is the volume of the
whole system, the Greek letters α, β refer to the Cartesian
coordinates. Here vα and vβ are the velocity operators
determined by the Heisenberg equation of motion, whereas
G is the Green’s function, and the symbol 〈 〉 is used to
express the ensemble average.

The most important quantity is Gij which represents
the matrix element of the Green’s function G or can be
directly called the site Green’s function. To get the con-
ductivity tensor we have to calculate 〈Gij〉 in the coher-
ent potential approximation (CPA). In the theory of the
Green’s function, we can write the recursion equation for
the site Green’s function as

Gij = gi

(
δij +

∑

im

WimGmj

)
, (3)

where

Wim =
{

exp(iAim/φ0), if i is nearest to m,
0, otherwise, (4)

and
gi =

1
z − εi

. (5)

The latter is the bare locator for site i. If the disordered
distribution of metal atoms is taken into account, the site
Green’s function and bare locator can be rewritten, like
in the Blackman-Esterling-Beck’s approach [6,7], as the
following equations

G̃ij = xiGijxj , (6)

and
g̃i = xigi. (7)

Here the projection operator xi is equal to one if site i is
occupied by a metallic atom and is zero otherwise.

Obviously the disorder is only associated with a single-
site quantity now. The locator g̃i varies from site to site.
However, Wij is assumed to be translationally invariant,

depending only on the vector Rij between sites i and j.
The diagonal matrix element G̃ii can be written as

G̃ii =
g̃i

1 − g̃i∆i
, (8)

where ∆i is the fully renormalized interaction defined by

∆i =
∑

i�=j

Wij g̃jWji

+
∑

j �=i

∑

m �=i

Wij g̃jWjm g̃mWmi + · · · (9)

From this expansion, we can understand that ∆i arises
from the hopping of electrons away from and then back
to site i, avoiding site i in the midway. It provides a self-
energy correction to the site energy εi.

We have to make an approximation to evaluate the
expansion in equation (9). An effective-medium locator is
introduced by

ḡ =
1

z − ε0
, (10)

in terms of a renormalized energy ε0. The renormalized
interaction can also be obtained and is denoted by ∆̄.
Replacing ∆i by ∆̄ in equation (8), one obtains the result

G̃ii =
g̃i

1 − g̃i∆̄
. (11)

It is consistent with the spirit of the CPA to replace loca-
tor g̃i in equation (7) by the effective-medium locator ḡ,
because the renormalized interaction ∆̄ depends only on
the effective-medium locator ḡ. Then, an effective-medium
Green’s function is obtained as

〈G̃ii〉eff =
ḡ

1 − ḡ∆̄
. (12)

From equation (11) one can define

γ ≡ 〈G̃ii〉, (13)

where 〈 〉 means the average over the occupation of a
single site. So γ is independent of site index i. The
effective-medium Green’s function 〈G̃ii〉eff must be equal
to 〈G̃ii〉, so

γ =
1

z − ε0 − ∆̄
=

x

z − ε − ∆̄
. (14)

From this equation, ε0 can be found.
In the momentum representation, we have

γ =
1
N

∑

k

G(k) =
1
N

∑

k

1
z − ε − Wk

, (15)

where the sum for k is taken over the first Brillouin zone.
The self-consistent condition for the renormalized interac-
tion ∆̄ is derived as

1
∆̄

=
∑

k

1
z − ε − 2∆̄ − xWk

, (16)
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where the Fourier transform of Wk is defined by the ex-
pression

Wk =
1
N

∑

i,j

Wije
ik·Rij , (17)

which can be evaluated by combining with equation (4).
By the numerical calculation for equations (16)

and (17), we can get the renormalized interaction ∆̄, and
then γ from equation (14). As usual, in the Green’s func-
tion approach, the variable z must be replaced by z + iη
where η is an infinitesimal quantity, and the limit z −→ 0
must be taken. Finally, the average site Green’s function
can be expressed in the form

〈Gij〉 = γ + γWijγ + γWimγWmjγ + · · · (18)

Here still the nearest neighboring sites are taken into ac-
count. Since γ and Wij are not dependent on the site
indices after average, 〈Gij〉 is only dependent on the vec-
tor Rij . A further restriction is needed. In each term of
equation (18), any site index is not allowed to repeat, and
all γs of a particular term refer to different sites. We use
the first four terms for our calculations, because equa-
tion (18) is an infinite series, a cut-off must be made to
get numerical results. The number of terms to be included
is relevant to the dephasing length of the system.

In nanoscale metal-insulator composites, a conductiv-
ity transition is predicted, if charge carriers are assumed to
be classical particles at the geometric percolation thresh-
old xc, below which the metallic component can no longer
form a infinite network. But the real picture is quite dif-
ferent, when the wave nature of the charges is impor-
tant taken into account, and the inelastic scattering is
absent in a region larger than several granules, that is,
the phase coherence is conserved in the elastic mean free
path. Localization is caused by the multiple scatterings
of the electronic waves in the random metallic network.
Even if the metallic volume fraction x is above the geo-
metric percolation threshold xc and the infinite metallic
network is formed, an electron is still in its localized area
until x > xq, which is the quantum percolation thresh-
old. When xc < x < xq, the classical-percolation predicts
metallic behavior while the quantum-percolation predicts
nonmetallic behavior. Since the phase factor is associated
with the external magnetic field, the Hall coefficient also
depends on the external magnetic field.

Now we can calculate the average site Green’s function
self-consistently by the numerical iterative method. And
then the site Green’s function is substituted into the Kubo
formula in order to get the conduction tensor, especially
the transverse conductor σxy, and the Hall coefficient RH

is given by

RH =
1

σxyB
. (19)

The log RH is plotted versus (x − xc) in Figure 1. In gen-
eral, the classical percolation threshold xc is about 0.31.
Above the classical percolation threshold xc, the Hall ef-
ficient RH increases with increasing metallic volume frac-
tion until x is larger than a certain value. This value here
is about 0.41 which is the quantum percolation threshold.

Fig. 1. Effective Hall coefficient versus metallic concentration
calculated in the coherent potential approximation. The phase
factor θ = −Bb2/φ0, where b is the bond length in the three
directions. The effect of the phase factor is shown in the present
figure.

Fig. 2. Effective Hall coefficient versus metallic concentration
calculated by the numerical diagonalization method.

We use θ to label the phase factor. It could be seen in Fig-
ure 1 that, near the quantum percolation threshold xq , the
Hall coefficient RH peaks for several finite θ. Afterwards,
RH begins to decrease as in the classical cases. The value
of the Hall coefficient at xq is about 3 orders greater than
the pure metal case. The dependence of the magnetic filed
is also exhibited in Figure 1. These results are in excellent
agreement with the formerly experimental and theoretical
results.

For comparison, we also use the numerical diagonal-
ization method to deal with the Hamiltonian in equa-
tion (1) [4]. The calculated results for RH versus (x − xc)
are shown in Figure 2. These totally numerical calcula-
tions by sampling and average also indicate that both the
quantum interference and the classical percolation are es-
sential in the giant Hall effect. The competition between
the two kind of behaviors leads to the great enhancement
of the effective Hall coefficient. These results agree well
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with the results obtained from the CPA and Green’s func-
tion above.

In summary, we have presented an analytic method to
study the local quantum interference and percolation in
the electron transport in granular metal-insulator compos-
ites. The conductivity, Hall coefficient and other physical
quantities can be numerically calculated by our method.
We have shown that the quantum interference and per-
colation can change the electron transport behavior dra-
matically, which offers a quantitative explanation of the
giant Hall effect in nonmagnetic granular metal-insulator
systems.
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